restructure, start flask stuff

master
michael 2022-10-11 13:19:48 -05:00
parent 37fd33c0f3
commit 63eb8bdb85
23 changed files with 311 additions and 68 deletions

3
.gitignore vendored
View File

@ -2,7 +2,8 @@
.vscode/ .vscode/
*.swp *.swp
uploads/*
!uploads/.gitkeep
# Byte-compiled / optimized / DLL files # Byte-compiled / optimized / DLL files
__pycache__/ __pycache__/

View File

@ -6,6 +6,9 @@ name = "pypi"
[packages] [packages]
opencv-python = "*" opencv-python = "*"
numba = "*" numba = "*"
flask = "*"
gunicorn = "*"
werkzeug = "*"
[dev-packages] [dev-packages]

98
Pipfile.lock generated
View File

@ -1,7 +1,7 @@
{ {
"_meta": { "_meta": {
"hash": { "hash": {
"sha256": "4d38c8456723919069d64e7e19fd21317602969788feb71d5a4b4bbd183adcf2" "sha256": "f32b823e3975ed0083bf7bedff36887eb3c9a01fe41b0e9142630b508e63692a"
}, },
"pipfile-spec": 6, "pipfile-spec": 6,
"requires": { "requires": {
@ -16,6 +16,46 @@
] ]
}, },
"default": { "default": {
"click": {
"hashes": [
"sha256:7682dc8afb30297001674575ea00d1814d808d6a36af415a82bd481d37ba7b8e",
"sha256:bb4d8133cb15a609f44e8213d9b391b0809795062913b383c62be0ee95b1db48"
],
"markers": "python_version >= '3.7'",
"version": "==8.1.3"
},
"flask": {
"hashes": [
"sha256:642c450d19c4ad482f96729bd2a8f6d32554aa1e231f4f6b4e7e5264b16cca2b",
"sha256:b9c46cc36662a7949f34b52d8ec7bb59c0d74ba08ba6cb9ce9adc1d8676d9526"
],
"index": "pypi",
"version": "==2.2.2"
},
"gunicorn": {
"hashes": [
"sha256:9dcc4547dbb1cb284accfb15ab5667a0e5d1881cc443e0677b4882a4067a807e",
"sha256:e0a968b5ba15f8a328fdfd7ab1fcb5af4470c28aaf7e55df02a99bc13138e6e8"
],
"index": "pypi",
"version": "==20.1.0"
},
"itsdangerous": {
"hashes": [
"sha256:2c2349112351b88699d8d4b6b075022c0808887cb7ad10069318a8b0bc88db44",
"sha256:5dbbc68b317e5e42f327f9021763545dc3fc3bfe22e6deb96aaf1fc38874156a"
],
"markers": "python_version >= '3.7'",
"version": "==2.1.2"
},
"jinja2": {
"hashes": [
"sha256:31351a702a408a9e7595a8fc6150fc3f43bb6bf7e319770cbc0db9df9437e852",
"sha256:6088930bfe239f0e6710546ab9c19c9ef35e29792895fed6e6e31a023a182a61"
],
"markers": "python_version >= '3.7'",
"version": "==3.1.2"
},
"llvmlite": { "llvmlite": {
"hashes": [ "hashes": [
"sha256:03aee0ccd81735696474dc4f8b6be60774892a2929d6c05d093d17392c237f32", "sha256:03aee0ccd81735696474dc4f8b6be60774892a2929d6c05d093d17392c237f32",
@ -50,6 +90,52 @@
"markers": "python_version >= '3.7'", "markers": "python_version >= '3.7'",
"version": "==0.39.1" "version": "==0.39.1"
}, },
"markupsafe": {
"hashes": [
"sha256:0212a68688482dc52b2d45013df70d169f542b7394fc744c02a57374a4207003",
"sha256:089cf3dbf0cd6c100f02945abeb18484bd1ee57a079aefd52cffd17fba910b88",
"sha256:10c1bfff05d95783da83491be968e8fe789263689c02724e0c691933c52994f5",
"sha256:33b74d289bd2f5e527beadcaa3f401e0df0a89927c1559c8566c066fa4248ab7",
"sha256:3799351e2336dc91ea70b034983ee71cf2f9533cdff7c14c90ea126bfd95d65a",
"sha256:3ce11ee3f23f79dbd06fb3d63e2f6af7b12db1d46932fe7bd8afa259a5996603",
"sha256:421be9fbf0ffe9ffd7a378aafebbf6f4602d564d34be190fc19a193232fd12b1",
"sha256:43093fb83d8343aac0b1baa75516da6092f58f41200907ef92448ecab8825135",
"sha256:46d00d6cfecdde84d40e572d63735ef81423ad31184100411e6e3388d405e247",
"sha256:4a33dea2b688b3190ee12bd7cfa29d39c9ed176bda40bfa11099a3ce5d3a7ac6",
"sha256:4b9fe39a2ccc108a4accc2676e77da025ce383c108593d65cc909add5c3bd601",
"sha256:56442863ed2b06d19c37f94d999035e15ee982988920e12a5b4ba29b62ad1f77",
"sha256:671cd1187ed5e62818414afe79ed29da836dde67166a9fac6d435873c44fdd02",
"sha256:694deca8d702d5db21ec83983ce0bb4b26a578e71fbdbd4fdcd387daa90e4d5e",
"sha256:6a074d34ee7a5ce3effbc526b7083ec9731bb3cbf921bbe1d3005d4d2bdb3a63",
"sha256:6d0072fea50feec76a4c418096652f2c3238eaa014b2f94aeb1d56a66b41403f",
"sha256:6fbf47b5d3728c6aea2abb0589b5d30459e369baa772e0f37a0320185e87c980",
"sha256:7f91197cc9e48f989d12e4e6fbc46495c446636dfc81b9ccf50bb0ec74b91d4b",
"sha256:86b1f75c4e7c2ac2ccdaec2b9022845dbb81880ca318bb7a0a01fbf7813e3812",
"sha256:8dc1c72a69aa7e082593c4a203dcf94ddb74bb5c8a731e4e1eb68d031e8498ff",
"sha256:8e3dcf21f367459434c18e71b2a9532d96547aef8a871872a5bd69a715c15f96",
"sha256:8e576a51ad59e4bfaac456023a78f6b5e6e7651dcd383bcc3e18d06f9b55d6d1",
"sha256:96e37a3dc86e80bf81758c152fe66dbf60ed5eca3d26305edf01892257049925",
"sha256:97a68e6ada378df82bc9f16b800ab77cbf4b2fada0081794318520138c088e4a",
"sha256:99a2a507ed3ac881b975a2976d59f38c19386d128e7a9a18b7df6fff1fd4c1d6",
"sha256:a49907dd8420c5685cfa064a1335b6754b74541bbb3706c259c02ed65b644b3e",
"sha256:b09bf97215625a311f669476f44b8b318b075847b49316d3e28c08e41a7a573f",
"sha256:b7bd98b796e2b6553da7225aeb61f447f80a1ca64f41d83612e6139ca5213aa4",
"sha256:b87db4360013327109564f0e591bd2a3b318547bcef31b468a92ee504d07ae4f",
"sha256:bcb3ed405ed3222f9904899563d6fc492ff75cce56cba05e32eff40e6acbeaa3",
"sha256:d4306c36ca495956b6d568d276ac11fdd9c30a36f1b6eb928070dc5360b22e1c",
"sha256:d5ee4f386140395a2c818d149221149c54849dfcfcb9f1debfe07a8b8bd63f9a",
"sha256:dda30ba7e87fbbb7eab1ec9f58678558fd9a6b8b853530e176eabd064da81417",
"sha256:e04e26803c9c3851c931eac40c695602c6295b8d432cbe78609649ad9bd2da8a",
"sha256:e1c0b87e09fa55a220f058d1d49d3fb8df88fbfab58558f1198e08c1e1de842a",
"sha256:e72591e9ecd94d7feb70c1cbd7be7b3ebea3f548870aa91e2732960fa4d57a37",
"sha256:e8c843bbcda3a2f1e3c2ab25913c80a3c5376cd00c6e8c4a86a89a28c8dc5452",
"sha256:efc1913fd2ca4f334418481c7e595c00aad186563bbc1ec76067848c7ca0a933",
"sha256:f121a1420d4e173a5d96e47e9a0c0dcff965afdf1626d28de1460815f7c4ee7a",
"sha256:fc7b548b17d238737688817ab67deebb30e8073c95749d55538ed473130ec0c7"
],
"markers": "python_version >= '3.7'",
"version": "==2.1.1"
},
"numba": { "numba": {
"hashes": [ "hashes": [
"sha256:0c358fd4ef7c5efc09ee96432284d66df285bd68654e85c39cf6c570dc35429a", "sha256:0c358fd4ef7c5efc09ee96432284d66df285bd68654e85c39cf6c570dc35429a",
@ -115,7 +201,7 @@
"sha256:f8c02ec3c4c4fcb718fdf89a6c6f709b14949408e8cf2a2be5bfa9c49548fd85", "sha256:f8c02ec3c4c4fcb718fdf89a6c6f709b14949408e8cf2a2be5bfa9c49548fd85",
"sha256:ffcf105ecdd9396e05a8e58e81faaaf34d3f9875f137c7372450baa5d77c9a54" "sha256:ffcf105ecdd9396e05a8e58e81faaaf34d3f9875f137c7372450baa5d77c9a54"
], ],
"markers": "python_version >= '3.10'", "markers": "python_version >= '3.7'",
"version": "==1.23.3" "version": "==1.23.3"
}, },
"opencv-python": { "opencv-python": {
@ -138,6 +224,14 @@
], ],
"markers": "python_version >= '3.7'", "markers": "python_version >= '3.7'",
"version": "==59.8.0" "version": "==59.8.0"
},
"werkzeug": {
"hashes": [
"sha256:7ea2d48322cc7c0f8b3a215ed73eabd7b5d75d0b50e31ab006286ccff9e00b8f",
"sha256:f979ab81f58d7318e064e99c4506445d60135ac5cd2e177a2de0089bfd4c9bd5"
],
"index": "pypi",
"version": "==2.2.2"
} }
}, },
"develop": {} "develop": {}

View File

@ -7,26 +7,6 @@
<td class="legend-cell"><div style="width:20px;height:20px;background-color:rgb(256, 176, 0);"></div></td> <td class="legend-cell"><div style="width:20px;height:20px;background-color:rgb(256, 176, 0);"></div></td>
<td class="legend-cell">0°C</td> <td class="legend-cell">0°C</td>
</tr> </tr>
<tr>
<td class="legend-cell"><div style="width:20px;height:20px;background-color:rgb(168, 0, 0);"></div></td>
<td class="legend-cell">800°C</td>
</tr>
<tr>
<td class="legend-cell"><div style="width:20px;height:20px;background-color:rgb(0, 96, 255);"></div></td>
<td class="legend-cell">900°C</td>
</tr>
<tr>
<td class="legend-cell"><div style="width:20px;height:20px;background-color:rgb(106, 255, 150);"></div></td>
<td class="legend-cell">1000°C</td>
</tr>
<tr>
<td class="legend-cell"><div style="width:20px;height:20px;background-color:rgb(255, 136, 0);"></div></td>
<td class="legend-cell">1000°C</td>
</tr>
<tr>
<td class="legend-cell"><div style="width:20px;height:20px;background-color:rgb(128, 0, 0);"></div></td>
<td class="legend-cell">1000°C</td>
</tr>
</table> </table>
<style> <style>

View File

Before

Width:  |  Height:  |  Size: 27 KiB

After

Width:  |  Height:  |  Size: 27 KiB

View File

Before

Width:  |  Height:  |  Size: 513 KiB

After

Width:  |  Height:  |  Size: 513 KiB

View File

Before

Width:  |  Height:  |  Size: 986 KiB

After

Width:  |  Height:  |  Size: 986 KiB

View File

Before

Width:  |  Height:  |  Size: 1.3 MiB

After

Width:  |  Height:  |  Size: 1.3 MiB

View File

Before

Width:  |  Height:  |  Size: 9.9 KiB

After

Width:  |  Height:  |  Size: 9.9 KiB

View File

Before

Width:  |  Height:  |  Size: 414 KiB

After

Width:  |  Height:  |  Size: 414 KiB

View File

Before

Width:  |  Height:  |  Size: 1.1 MiB

After

Width:  |  Height:  |  Size: 1.1 MiB

View File

Before

Width:  |  Height:  |  Size: 7.7 KiB

After

Width:  |  Height:  |  Size: 7.7 KiB

View File

Before

Width:  |  Height:  |  Size: 354 KiB

After

Width:  |  Height:  |  Size: 354 KiB

View File

Before

Width:  |  Height:  |  Size: 841 KiB

After

Width:  |  Height:  |  Size: 841 KiB

138
examples/ratio_pyrometry.py Normal file
View File

@ -0,0 +1,138 @@
import math
import cv2 as cv
import numpy as np
from numba import jit
import json
# camera settings
file = '01-0001.png'
I_Darkcurrent = 150.5
exposure_time = 0.500
f_stop = 2.4
ISO = 64 # basically brightness
# pyrometry config
MAX_TEMP = 1200
MIN_TEMP = 60
# original range from paper
# MAX_GR_RATIO = 1200
# MIN_GR_RATIO = 600
# Cropping config
x1 = 420
x2 = 1200
y1 = 400
y2 = -1
# post-processing
smoothing_radius = 2
# temperature key generation
key_entries = 6
@jit(nopython=True)
def rg_ratio_normalize(imgarr):
# set max & min to most extreme values,
# work up & down respectively from there
tmin = MAX_TEMP
tmax = 0
imgnew = imgarr
for i in range(len(imgarr)):
for j in range(len(imgarr[i])):
px = imgarr[i][j]
r_norm = normalization_func(px[0])
g_norm = normalization_func(px[1])
# apply camera calibration func
temp_C = pyrometry_calibration_formula(g_norm, r_norm)
# remove pixels outside calibration range
if MAX_TEMP != None and temp_C > MAX_TEMP or MIN_TEMP != None and temp_C < MIN_TEMP:
temp_C = 0
# update min & max
if temp_C < tmin and temp_C >= 0:
tmin = temp_C
if temp_C > tmax:
tmax = temp_C
imgnew[i][j] = [temp_C, temp_C, temp_C]
return imgnew, tmin, tmax
@jit(nopython=True)
def normalization_func(i):
"""
does something to the pixels that i don't understand lol
"""
return (i - I_Darkcurrent) * (f_stop ** 2) / (ISO * exposure_time)
@jit(nopython=True)
def pyrometry_calibration_formula(i_ng, i_nr):
"""
Given the green-red ratio, calculates an approximate temperature
in Celsius.
"""
return 362.73 * math.log10(
(i_ng/i_nr) ** 3
) + 2186.7 * math.log10(
(i_ng/i_nr) ** 3
) + 4466.5 * math.log10(
(i_ng / i_nr) ** 3
) + 3753.5
# read image & crop
file_name = file.split(".")[0]
file_ext = file.split(".")[1]
img = cv.imread(file)
img = img[y1:y2, x1:x2]
cv.imwrite(f'{file_name}-cropped.{file_ext}', img)
# img = cv.imread('ember_test.png')
img, tmin, tmax = rg_ratio_normalize(img)
print(f"min: {tmin}°C")
print(f"max: {tmax}°C")
# build & apply smoothing conv kernel
k = []
for i in range(smoothing_radius):
k.append([1/(smoothing_radius**2) for i in range(smoothing_radius)])
kernel = np.array(k)
img = cv.filter2D(src=img, ddepth=-1, kernel=kernel)
# write colormapped image
img_jet = cv.applyColorMap(img, cv.COLORMAP_JET)
cv.imwrite(f'{file_name}-cropped-transformed-ratio.{file_ext}', img_jet)
# --- Generate temperature key ---
# adjust max & min temps to be the same as the image
# tmin_adj = tmin / (smoothing_radius ** 2)
# tmax_adj = tmax / (smoothing_radius ** 2)
# Generate 6-step key
step = (tmax - tmin) / (key_entries-1)
temps = []
key_img_arr = [[]]
for i in range(key_entries):
res_temp = tmin + (i * step)
res_color = (tmax - (i * step)) / MAX_TEMP * 255
temps.append(res_temp)
key_img_arr[0].append([res_color, res_color, res_color])
key_img = np.array(key_img_arr).astype(np.uint8)
key_img_jet = cv.applyColorMap(key_img, cv.COLORMAP_JET)
# cv.imwrite(f'{file_name}-key.{file_ext}', key_img_jet)
tempkey = {}
for i in range(len(temps)):
c = key_img_jet[0][i]
tempkey[temps[i]] = f"rgb({c[0]}, {c[1]}, {c[2]})"
print(json.dumps(tempkey, indent=4))

16
flask_frontend.py Normal file
View File

@ -0,0 +1,16 @@
from flask import Flask, render_template, request
app = Flask(__name__)
@app.route('/', methods=['GET'])
def index():
return render_template('index.html')
@app.route('/ratio_pyro', methods=['POST'])
def ratio_pyro():
f = request.files['file']
I_Darkcurrent = 150.5
exposure_time = 0.500
f_stop = 2.4
ISO = 64
return 200

View File

@ -84,6 +84,7 @@ def pyrometry_calibration_formula(i_ng, i_nr):
(i_ng / i_nr) ** 3 (i_ng / i_nr) ** 3
) + 3753.5 ) + 3753.5
def ratio_pyrometry_pipeline(file):
# read image & crop # read image & crop
file_name = file.split(".")[0] file_name = file.split(".")[0]
@ -96,9 +97,6 @@ cv.imwrite(f'{file_name}-cropped.{file_ext}', img)
img, tmin, tmax = rg_ratio_normalize(img) img, tmin, tmax = rg_ratio_normalize(img)
print(f"min: {tmin}°C")
print(f"max: {tmax}°C")
# build & apply smoothing conv kernel # build & apply smoothing conv kernel
k = [] k = []
for i in range(smoothing_radius): for i in range(smoothing_radius):
@ -128,14 +126,8 @@ for i in range(key_entries):
key_img = np.array(key_img_arr).astype(np.uint8) key_img = np.array(key_img_arr).astype(np.uint8)
key_img_jet = cv.applyColorMap(key_img, cv.COLORMAP_JET) key_img_jet = cv.applyColorMap(key_img, cv.COLORMAP_JET)
# cv.imwrite(f'{file_name}-key.{file_ext}', key_img_jet)
tempkey = {} tempkey = {}
for i in range(len(temps)): for i in range(len(temps)):
c = key_img_jet[0][i] c = key_img_jet[0][i]
tempkey[temps[i]] = f"rgb({c[0]}, {c[1]}, {c[2]})" tempkey[temps[i]] = f"rgb({c[0]}, {c[1]}, {c[2]})"
# with open(f"{file_name}-tempkey.json", "w+") as file_out:
# json.dump(tempkey, file_out)
print(json.dumps(tempkey, indent=4))

4
templates/app.css Normal file
View File

@ -0,0 +1,4 @@
.form {
display: flex;
flex-direction: column;
}

8
templates/base.jinja2 Normal file
View File

@ -0,0 +1,8 @@
<!DOCTYPE html>
<head>
<title>Pyrometry Application</title>
<link rel="app.css">
</head>
<body>
{% block content %}
</body>

7
templates/index.jinja2 Normal file
View File

@ -0,0 +1,7 @@
{% extends "base.html" %}
{% block content %}
<div class="form">
<button onclick="">
</button>
</div>
{% endblock %}

0
uploads/.gitkeep Normal file
View File