firebrand edge detection demo
Co-authored-by: Alex <AlexanderMcDowell@users.noreply.github.com>master
parent
cc2820da90
commit
59e0f2d861
Binary file not shown.
After Width: | Height: | Size: 8.6 KiB |
|
@ -2,26 +2,50 @@
|
||||||
|
|
||||||
import cv2 as cv
|
import cv2 as cv
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from skimage import measure, morphology, color, segmentation
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
# edge-detection kernel amplification
|
file = 'streaktest2.png'
|
||||||
AMPLIFIER=8
|
|
||||||
|
|
||||||
MIN_INTENSITY=100
|
|
||||||
|
|
||||||
# file = '01-0001-cropped.png'
|
|
||||||
file = 'streaktest.png'
|
|
||||||
file_name = file.split(".")[0]
|
|
||||||
file_ext = file.split(".")[1]
|
|
||||||
|
|
||||||
img = cv.imread(file)
|
img = cv.imread(file)
|
||||||
|
|
||||||
img = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
|
# blurred = cv.GaussianBlur(img, (8, 8), 0)
|
||||||
|
|
||||||
kernel = np.array([
|
retval, thresh_gray = cv.threshold(img, 120, 255, cv.THRESH_BINARY)
|
||||||
[-1, -1, -1],
|
|
||||||
[-1, AMPLIFIER, -1],
|
|
||||||
[-1, -1, -1],
|
|
||||||
])
|
|
||||||
img = cv.filter2D(src=img, ddepth=-1, kernel=kernel)
|
|
||||||
|
|
||||||
cv.imwrite(f'{file_name}-edge-detection.{file_ext}', img)
|
kernel = np.ones((7, 7), np.uint8)
|
||||||
|
image = cv.morphologyEx(thresh_gray, cv.MORPH_CLOSE, kernel, iterations=1)
|
||||||
|
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
|
||||||
|
|
||||||
|
retval, gray = cv.threshold(gray, 0, 255, cv.THRESH_BINARY)
|
||||||
|
|
||||||
|
gray = cv.copyMakeBorder(
|
||||||
|
gray,
|
||||||
|
20,
|
||||||
|
20,
|
||||||
|
20,
|
||||||
|
20,
|
||||||
|
cv.BORDER_CONSTANT,
|
||||||
|
value=0
|
||||||
|
)
|
||||||
|
|
||||||
|
contours = measure.find_contours(array=gray, level=100)
|
||||||
|
|
||||||
|
fig, ax = plt.subplots()
|
||||||
|
ax.imshow(gray, cmap=plt.cm.gray, alpha=1)
|
||||||
|
|
||||||
|
def calculate_area(countour):
|
||||||
|
c = np.expand_dims(countour.astype(np.float32), 1)
|
||||||
|
c = cv.UMat(c)
|
||||||
|
|
||||||
|
return cv.contourArea(c)
|
||||||
|
|
||||||
|
for contour in contours:
|
||||||
|
area = calculate_area(contour)
|
||||||
|
|
||||||
|
if calculate_area(contour) > 250:
|
||||||
|
ax.plot(contour[:, 1], contour[:, 0], linewidth=0.5, color='orangered')
|
||||||
|
|
||||||
|
ax.axis('image')
|
||||||
|
ax.set_xticks([])
|
||||||
|
ax.set_yticks([])
|
||||||
|
plt.savefig("edge_detection_figure.png", dpi=500)
|
||||||
|
|
Binary file not shown.
After Width: | Height: | Size: 85 KiB |
Binary file not shown.
Before Width: | Height: | Size: 24 KiB After Width: | Height: | Size: 2.6 KiB |
Binary file not shown.
After Width: | Height: | Size: 11 KiB |
Binary file not shown.
After Width: | Height: | Size: 445 KiB |
Loading…
Reference in New Issue