139 lines
3.4 KiB
Python
139 lines
3.4 KiB
Python
|
import math
|
||
|
import cv2 as cv
|
||
|
import numpy as np
|
||
|
from numba import jit
|
||
|
import json
|
||
|
|
||
|
# camera settings
|
||
|
file = '01-0001.png'
|
||
|
I_Darkcurrent = 150.5
|
||
|
exposure_time = 0.500
|
||
|
f_stop = 2.4
|
||
|
ISO = 64 # basically brightness
|
||
|
|
||
|
# pyrometry config
|
||
|
MAX_TEMP = 1200
|
||
|
MIN_TEMP = 60
|
||
|
# original range from paper
|
||
|
# MAX_GR_RATIO = 1200
|
||
|
# MIN_GR_RATIO = 600
|
||
|
|
||
|
# Cropping config
|
||
|
x1 = 420
|
||
|
x2 = 1200
|
||
|
y1 = 400
|
||
|
y2 = -1
|
||
|
|
||
|
# post-processing
|
||
|
smoothing_radius = 2
|
||
|
|
||
|
# temperature key generation
|
||
|
key_entries = 6
|
||
|
|
||
|
|
||
|
@jit(nopython=True)
|
||
|
def rg_ratio_normalize(imgarr):
|
||
|
# set max & min to most extreme values,
|
||
|
# work up & down respectively from there
|
||
|
tmin = MAX_TEMP
|
||
|
tmax = 0
|
||
|
|
||
|
imgnew = imgarr
|
||
|
for i in range(len(imgarr)):
|
||
|
for j in range(len(imgarr[i])):
|
||
|
px = imgarr[i][j]
|
||
|
r_norm = normalization_func(px[0])
|
||
|
g_norm = normalization_func(px[1])
|
||
|
|
||
|
# apply camera calibration func
|
||
|
temp_C = pyrometry_calibration_formula(g_norm, r_norm)
|
||
|
|
||
|
# remove pixels outside calibration range
|
||
|
if MAX_TEMP != None and temp_C > MAX_TEMP or MIN_TEMP != None and temp_C < MIN_TEMP:
|
||
|
temp_C = 0
|
||
|
|
||
|
# update min & max
|
||
|
if temp_C < tmin and temp_C >= 0:
|
||
|
tmin = temp_C
|
||
|
if temp_C > tmax:
|
||
|
tmax = temp_C
|
||
|
|
||
|
imgnew[i][j] = [temp_C, temp_C, temp_C]
|
||
|
return imgnew, tmin, tmax
|
||
|
|
||
|
|
||
|
@jit(nopython=True)
|
||
|
def normalization_func(i):
|
||
|
"""
|
||
|
does something to the pixels that i don't understand lol
|
||
|
"""
|
||
|
return (i - I_Darkcurrent) * (f_stop ** 2) / (ISO * exposure_time)
|
||
|
|
||
|
|
||
|
@jit(nopython=True)
|
||
|
def pyrometry_calibration_formula(i_ng, i_nr):
|
||
|
"""
|
||
|
Given the green-red ratio, calculates an approximate temperature
|
||
|
in Celsius.
|
||
|
"""
|
||
|
return 362.73 * math.log10(
|
||
|
(i_ng/i_nr) ** 3
|
||
|
) + 2186.7 * math.log10(
|
||
|
(i_ng/i_nr) ** 2
|
||
|
) + 4466.5 * math.log10(
|
||
|
(i_ng / i_nr)
|
||
|
) + 3753.5
|
||
|
|
||
|
|
||
|
# read image & crop
|
||
|
file_name = file.split(".")[0]
|
||
|
file_ext = file.split(".")[1]
|
||
|
img = cv.imread(file)
|
||
|
img = img[y1:y2, x1:x2]
|
||
|
cv.imwrite(f'{file_name}-cropped.{file_ext}', img)
|
||
|
|
||
|
# img = cv.imread('ember_test.png')
|
||
|
|
||
|
img, tmin, tmax = rg_ratio_normalize(img)
|
||
|
|
||
|
print(f"min: {tmin}°C")
|
||
|
print(f"max: {tmax}°C")
|
||
|
|
||
|
# build & apply smoothing conv kernel
|
||
|
k = []
|
||
|
for i in range(smoothing_radius):
|
||
|
k.append([1/(smoothing_radius**2) for i in range(smoothing_radius)])
|
||
|
kernel = np.array(k)
|
||
|
|
||
|
img = cv.filter2D(src=img, ddepth=-1, kernel=kernel)
|
||
|
|
||
|
# write colormapped image
|
||
|
img_jet = cv.applyColorMap(img, cv.COLORMAP_JET)
|
||
|
cv.imwrite(f'{file_name}-cropped-transformed-ratio.{file_ext}', img_jet)
|
||
|
|
||
|
# --- Generate temperature key ---
|
||
|
|
||
|
# adjust max & min temps to be the same as the image
|
||
|
# tmin_adj = tmin / (smoothing_radius ** 2)
|
||
|
# tmax_adj = tmax / (smoothing_radius ** 2)
|
||
|
# Generate 6-step key
|
||
|
step = (tmax - tmin) / (key_entries-1)
|
||
|
temps = []
|
||
|
key_img_arr = [[]]
|
||
|
for i in range(key_entries):
|
||
|
res_temp = tmin + (i * step)
|
||
|
res_color = (tmax - (i * step)) / MAX_TEMP * 255
|
||
|
temps.append(res_temp)
|
||
|
key_img_arr[0].append([res_color, res_color, res_color])
|
||
|
|
||
|
key_img = np.array(key_img_arr).astype(np.uint8)
|
||
|
key_img_jet = cv.applyColorMap(key_img, cv.COLORMAP_JET)
|
||
|
# cv.imwrite(f'{file_name}-key.{file_ext}', key_img_jet)
|
||
|
|
||
|
tempkey = {}
|
||
|
for i in range(len(temps)):
|
||
|
c = key_img_jet[0][i]
|
||
|
tempkey[temps[i]] = f"rgb({c[0]}, {c[1]}, {c[2]})"
|
||
|
|
||
|
print(json.dumps(tempkey, indent=4))
|