firelab-general/flask_frontend.py

43 lines
1.4 KiB
Python
Raw Normal View History

2022-10-11 11:19:48 -07:00
from flask import Flask, render_template, request
2022-10-11 13:46:53 -07:00
import numpy as np
from ratio_pyrometry import ratio_pyrometry_pipeline
import base64
2022-10-11 16:03:00 -07:00
import cv2 as cv
2022-10-11 11:19:48 -07:00
2022-10-11 16:03:00 -07:00
app = Flask(
__name__,
2022-10-20 17:33:15 -07:00
static_folder='static',
2022-10-11 16:03:00 -07:00
static_url_path='/s/'
)
2022-10-11 11:19:48 -07:00
@app.route('/', methods=['GET'])
def index():
2022-10-11 13:46:53 -07:00
return render_template('index.jinja2')
2022-10-11 11:19:48 -07:00
@app.route('/ratio_pyro', methods=['POST'])
def ratio_pyro():
f = request.files['file']
2022-10-11 13:46:53 -07:00
f_bytes = np.fromstring(f.read(), np.uint8)
img_orig, img_res, key = ratio_pyrometry_pipeline(
f_bytes,
ISO=float(request.form['iso']),
I_Darkcurrent=float(request.form['i_darkcurrent']),
exposure_time=float(request.form['exposure_time']),
f_stop=float(request.form['f_stop']),
MAX_TEMP=float(request.form['max_temp']),
2022-10-12 17:37:31 -07:00
MIN_TEMP=float(request.form['min_temp']),
smoothing_radius=int(request.form['smoothing_radius']),
2022-10-20 17:33:15 -07:00
key_entries=int(request.form['legend_entries']),
eqn_scaling_factor=float(request.form['equation_scaling_factor'])
2022-10-11 13:46:53 -07:00
)
img_orig_b64 = base64.b64encode(cv.imencode('.png', img_orig)[1]).decode(encoding='utf-8')
img_res_b64 = base64.b64encode(cv.imencode('.png', img_res)[1]).decode(encoding='utf-8')
2022-10-11 13:46:53 -07:00
return render_template(
'results.jinja2',
img_orig_b64=img_orig_b64,
img_res_b64=img_res_b64,
2022-10-11 13:46:53 -07:00
legend=key
)